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The growth constant of uniform star polymers 
in a slab geometry 
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Department of Chemistry, University of Toronto, Toronto, Ontario MSS 1A1, Canada 

Received 18 December 1986 

Abstract. We consider uniform star-branched polymer molecules, modelled by the corre- 
sponding graph weakly embedded in a simple cubic lattice, confined to a parallel-sided 
slab. In three (and higher) dimensions we show that the limiting entropy penbond is 
independent of the number of branches in the star and is equal to the connective constant 
of a self-avoiding walk on that subset of the lattice. In two dimensions, however, the 
limiting entropy per bond of a three-branch star is shown, for a particular case, to be 
strictly less than that for a self-avoiding walk and we present numerical evidence that this 
is a general result in two dimensions. 

1. introduction 

The statistics and dimensions of uniform star polymers have attracted a good deal of 
attention recently, partly because such molecules can now be synthesised in a controlled 
way (Roovers et a1 1983). These molecules can be modelled as connected graphs, 
weakly embeddable in a lattice, having one vertex of degree f on which are incident 
f branches each containing n vertices. In particular, the statistics of such systems have 
been studied by Miyake and Freed (1983), Wilkinson et a1 (1986) and Duplantier (1986). 

The work on uniform stars has been restricted to stars on a lattice with no additional 
geometrical constraints. On the other hand, self-avoiding walks have been studied 
with a variety of such constraints (see, e.g., Hammersley and Whittington 1985 and 
references therein). We shall be concerned here with the particular case of walks or 
stars on a d-dimensional lattice confined between two parallel ( d  - 1)-dimensional 
hyperplanes. In the case of self-avoiding walks, the effect of this constraint has been 
well studied by scaling arguments (Daoud and de Gennes 1977), exact enumeration 
(Middlemiss and Whittington 1976, Guttmann and Whittington 1978), Monte Carlo 
methods (Wall et a/  1978), transfer matrix methods (Klein 1980) and by self-consistent 
field approaches (see, e.g., Levine et a1 1978). In addition, some rigorous results have 
been obtained for this problem (Wall et a1 1977, Wall and Klein 1979, Whittington 
1983, Hammersley and Whittington 1985). 

The aim of this work is to investigate the effect on the limiting entropy per bond 
of an f-branch uniform star of confining the star between two parallel planes a distance 
L apart. In particular, we consider the f dependence of this quantity and show that 
the behaviour in two dimensions is quite different from the behaviour in three and 
higher dimensions. 
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2. Three and higher dimensions 

In this section we examine the behaviour of uniform star polymers confined to a 
parallel-sided slab in three dimensions. The extension to d 5 3 dimensions, where the 
system is confined by two parallel ( d  - 1)-dimensional hyperplanes, is straightforward. 

Consider a simple cubic lattice, whose vertices are the integer points in R3 with 
coordinates (x, y, z) .  Consider now a slab which consists of the subset of the these 
vertices such that 

O C Z Z L .  (2.1) 

If c,(L, z )  is the number of n-step self-avoiding walks starting at (O,O, z) confined to 
this slab, and c , ( L )  = Z, c,(L, z), then it has been shown that the connective constant 
K ( L )  defined by 

K ( L ) =  lim n-’  log c,(L)  (2.2) 
n-cO 

exists (Whittington 1983). 
If the walk is confined to a wedge W ( a ,  L )  within this slab, such that 

o s x  O S y C a x  O S Z S L  (2.3) 

for some particular positive value of a, then if we define cn(a,  L )  as the number of 
n-step self-avoiding walks starting at the origin and satisfying (2.3) it is straightforward 
to prove, by an extension of an argument due to Hammersley and Whittington (1989, 
that 

for all CY > 0. This result is also true if the walk begins at (0, 0, z) for any z such that 
O S Z C L .  

Suppose that s,(f, L )  is the number of uniform stars with f arms, having n edges 
in each arm, confined in the slab defined by (2.1) and having the vertex of degree f 
at (0, 0, z) with z satisfying 1 c z 5 L -  1. (For the moment we restrict ourselves to 
L >  1.) Clearly these stars are included in the set of graphs obtained by joining f 
self-avoiding walks in the slab, at their common origin, so that 

%(f,  L ) S  cn(L)’. (2.5) 

To obtain a lower bound on s,(f, L )  we proceed as follows. We first construct six 
disjoint wedges: 

w, : X Z l ,  l S y S x , O a z s L  

W, : y Z 2 , l s x C y - l , O s z = s L  

w, : X G - 1 ,  - 1 ~ y 5 x , O S z s L  

W, : y s - 2 ,  - 1 Z x 2 y S 1 ,  O C Z S L  

w, : x ~ - l , y z l , O S z S L  

W, : x 2 l , y S - l ,  O C Z S L .  
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U,, u 2 ,  u3 as unit steps along the positive x, y and z directions, and ti,, 
corresponding steps in the negative directions, then we can join the vertex 
z < L, to a vertex in each of these wedges by one of the following ‘links’: 

(2.7) 

I ,  = t i l U 2  

& =  u,ii2.  

We now construct a subset of the f a rm stars by constructing the graphs obtained 
as the union of (i)  the vertex (O,O, z ) ,  (ii) the ‘links’ I , ,  . . . , lf and (iii) f walks of 
n - k , ,  n - k 2 , .  . . , n - kf steps confined to the wedges W , ,  . . . , W, respectively, where 
k, is the number of edges in the link 1,. Since the wedges W, , W 2 ,  . . . , are disjoint the 
resulting graphs are uniform stars with f arms, having n edges in each arm. Hence 

f 
& ( A  L )  3 n C , - k , ( %  L )  

I = ,  

where each a ,  > 0. Taking logarithms, 
( 2 . 5 )  and (2.8) we have 

Iim(nf)-’sn(f, L ) =  K(L). 
n-oc 

(2.8) 

dividing by fn and letting n go to infinity in 

(2.9) 

This ‘limiting entropy per bond’ is independent off and is equal to the corresponding 
quantity for self-avoiding walks confined to the same slab. This argument extends 
easily to d > 3 but not, as we shall see in 9 3, to d = 2. 

If we consider only fs 5 ,  the above argument can be extended to L z  1 and, if 
f s 4 ,  to L a o .  

3. The two-dimensional case 

For a self-avoiding walk on the square lattice confined to a ‘slab’ so that 0 S y s L , 
the value of the connective constant is known exactly for L = 1 and 2 (Wall et a1 1977) 
and accurate numerical estimates (Klein 1980) are available up to L = 6. In particular, 
K (  1) = log[;( 1 +d)] = 0.481 21 . , . , (Note that, in the literature, there are different 
usages of the term ‘connective constant’ and of the symbol K.) 

To establish that the arguments of § 2 do not apply to d = 2, we examine the case 
f =  3, L = 1. A typical configuration for n = 4 is shown in figure l ( a ) .  Two arms of 
the star are essentially rigid while the third arm behaves as a self-avoiding walk with 
constraints. In fact, 

s,(3,1) = 4ci(  1) (3.1) 
where c i (  1) is the number of n-step self-avoiding walks confined to O S  y s 1 with the 
added restriction that the ‘right-most’ vertex is of unit degree. An unfolding argument 
(Hammersley and Welsh 1962) readily establishes that 

(3.2) 
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3 
( 0 )  

Figure 1. Configurations of ( a )  a three-arm star with L = 1 and ( b )  and (c )  a four-arm 
star with L = 2. 

so that, from (3.1) and (3.2), we have 

lim(3n)-' log sn(3,1) =$.(I)= ~ ( 3 , 1 )  
n-cs 

and the limiting entropy per bond is less than for a correspondingly confined self- 
avoiding walk. 

To investigate whether this is a general phenomenon for d = 2 ,  we have enumerated 
three-arm and four-arm stars for L c 5.  The results are given in tables 1 and 2. The 
estimates of ~ ( f ,  L )  given in table 3 were obtained from a standard ratio analysis of 
these data. 

Of course, it is easy to derive bounds on ~ ( f ,  L )  in terms of ~ ( 1 ,  L )  = K ( L ) .  The 
upper bound ~ ( f ,  L )  s K (  1, L )  follows immediately from a consideration of f self- 
avoiding n-step walks confined to 0 < y < L and incident on a common vertex of degree 

Table 1. Exact values of s,(3, L )  for the square lattice. 

n J L  2 3 4 5 

2 56 
3 244 
4 1352 
5 5 644 
6 27 916 
7 110 336 
8 514 696 
9 2 056 456 

10 9 026 316 
11 35934772 
12 151499524 
13 604131 112 

134 
1024 

58 840 
444 648 

2 890 492 
20 449 996 

129 640 568 
867 253 220 

a 756 

5424 148496 

218 302 
2 252 3 618 

25 932 50 606 
229 au 5 5 1  528 

6 258 592 
18774128 63293672 

170951360 675942548 

2 204 964 

1434555408 
12497069624 
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Table 2. Exact values of ~ " ( 4 ,  L) for the square lattice. 

n / L  2 3 4 5 

4919 

2 14 52 99 146 
3 28 336 1 260 2 508 
4 120 3 824 26 338 76 212 
5 326 25 136 289 926 1 272 336 
6 1764 258 100 4 324 590 25 339 868 
7 6 430 1 889 572 47 871 664 379 453 424 
8 36 776 18841 216 679686348 6888523084 
9 161 922 152 269 216 

10 835838 1432867852 
11 3 685 184 
12 17634384 
13 79036106 
14 365380978 

Table 3. Estimates of ~ ( f ;  L )  for the square lattice. 

____~  ~ 

1 0.4812 0.1604 - 
2 0.6492 0.44*0.01 0.36 * 0.01 
3 0.7359 0.57 iO.01 0.55i0.01 
4 0.7880 0.68 f 0.01 - 

0.9702 0.9702 0.9702 

j The lower bound 

K (4, L )  a ;[ K (  1, fL- 1) + K (  1, f L ) ]  L even 

with a similar result for L odd, is easily derived by considering the four arms of the 
star to be confined to the 'tubes' 

TI : O < X , ; L ~ ~ ~  L 

Tz : O Z X ,  i + f ~ s y s  L 

0 s x, 0 s y s f L  - 1 

T4 0 > x, 0 s y s fL 

with appropriate edges added to join the arms at (0, f L ) .  The result that 

lim lim(4n)-' log sn(4, L )  = lim lim(4n)-' log sn(4, L )  
n-m L-m L-rW R-m 

then follows easily, using arguments due to Hammersley and Whittington (1985). 
These bounds are rather weak and are therefore not useful numerically. However, 

in special cases it is possible to do somewhat better. We shall consider the special 
case o f f =  4, L = 2. The vertex of degree 4 must have a y coordinate equal to unity 
and we take it to be at (0, 1). The four vertices connected to it must be at (1,l ), (-1, l ) ,  
(0 ,2)  and (0,O) and the arrangement of the four arms of the star must be either as 
shown in figure l (b)  or figure I(c). For the arrangement corresponding to figure l (b) ,  
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the configurations of three of the arms are fixed and the fourth arm has c:(l, 2) 
configurations. This implies the lower bound: 

lim(4n)-’ log sn(4, 2) z $ K ( ~ ) .  
n-3c. 

We now consider the set of configurations which correspond to figure 1( c). To do 
this we first consider the number pn( L )  of (undirected, unrooted) polygons confined 
to 0 =z y s L. The behaviour of this quantity as n goes to infinity has been discussed 
by Klein (1980). In particular, Klein has evaluated the corresponding connective 
constant K ~ (  L )  for small L and has shown that it is not equal to K (  L). 

We shall confine ourselves to the case L = 2. We translate each polygon so that 
the minimum x coordinate of any vertex is unity. Each polygon includes the vertex 
(1, 1) and at least one of (1,2) and ( 1 , O ) .  Let qn(2) be the number of such polygons 
which contain (1,O) and call this set Q’(n,2). Clearly qn(2)3ipn(2) .  If we now 
consider polygons translated so that their maximum x coordinate is -1, and consider 
the subset, Q-(n, 2), which contains the vertex (-1,2), as well as (-1, l),  we see by 
symmetry that the number of these is also qn(2). We now concatenate each polygon 
from the set Q+(2n, 2) with each polygon from the set Q-(2n, 2), adding the vertices 
( O , O ) , ( O ,  l)and(O,2),togetherwiththeedges(O,O)-(O, l),(O,O)-(l,O),(O, 1 ) - ( l , l ) ,  
(0, 1)-(0,2),  (0, 1)-(-1, 1) and (0,2)-(-1,2), and deleting the edges (-1, 1 ) -  
(-1,2) and (1, 1) - (1,0), forming a figure eight with the vertex of degree 4 at the point 
(0, l ) ,  and confined between y = 0 and y = 2. If we now remove one vertex and the 
two incident edges from each of the circuits of this figure eight to leave a 4-star with 
n edges in each arm, we have the lower bound 

iim(4n)-’ log sn(4,2)  2 lim(4nl-I 1 0 g [ ( i p ~ ~ ( 2 ) ) ~ ]  
n-oc  n -cp  

so that 

K(4, 2) 2 Ko(2) = log( 1.414) =0.3464.. . 
where we have taken the numerical value from Klein (1980). The value of this lower 
bound is extremely close to our numerical estimate from series analysis and may be 
the best possible. 

4. Discussion 

The primary result of this paper is the proof that the limiting entropy per bond of an 
fa rm star confined between two parallel planes in three (or higher) dimensions is the 
same as for a self-avoiding walk. We have also shown, by a counterexample, that this 
is is not the case in two dimensions. For the two-dimensional case we have used exact 
enumeration and series analysis techniques to estimate the limiting entropy for various 
cases and have used these results to argue that this difference between the two- and 
higher-dimensional cases is a general phenomenon. 

The interesting question is to what extent this phenomenon can be related to other 
cases of objects in confined geometries? The obvious example is the observation of 
Klein that the connective constant of a polygon between two parallel lines, in two 
dimensions, is lower than that for a corresponding self-avoiding walk. In each case 
the underlying effect is that one part of the object ‘shades’ a region of the space so 
that it is inaccessible to another part of the object. This shading is an essentially 
two-dimensional feature. 
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